Deep-water masses in the Subpolar North Atlantic, where do they occur and what are the physics behind them?

by Patricia Handmann

In October 2014 I started my PhD at GEOMAR and Kiel University. I was coming from KIT (Karlsruhe Institute of Technology ), where I studied experimental and theoretical physics and worked on cloud microphysics for a year as part of my diploma (masters) thesis. Before I started my diploma thesis I got the chance of an internship at Alfred-Wegener Institute and worked on quality control of some old cruise data from RV POLARSIRKEL in 1980/81, which was a great experience. I had a lot of fun during these three months at AWI while getting to know this new field of ocean physics. So when I was looking for a PhD after this internship I was intrigued by the general topic of deep-water formation in the northern and southern hemisphere. When I started at GEOMAR this idea quickly evolved into a more focused study comparing a high-resolution ocean model (VIKING20) with observations from the 53°N array. This boundary current observatory is maintained by Kiel scientists since 1997 to document the changes of the deep-water circulation in the Subpolar North Atlantic (SPNA).

My main research question is: What are processes imprinting variability to the deep-water masses in the SPNA, where do they occur and what are the physics behind them.

But lets start with some background information …

The exit of the Labrador Sea is a key location in the subpolar North Atlantic concerning the integral quantities of the Deep Western Boundary Current (DWBC). It is the place where deep water masses from different origins and pathways meet. The combination of these is collectively called North Atlantic Deep Water (NADW).

To evaluate the high resolution model VIKING20 by means of integral quantities at the exit of the Labrador Sea, and to interpret the observed hydrographic and dynamic DWBC features with consideration of the underlying physical processes and forcing is the aim of my work.

I found that the VIKING20 model, which is driven by CORE2 atmospheric forcing, can be nicely compared to more than decade-long observations at the exit of the Labrador Sea near 53°N. VIKING20 is a high resolution (1/20°) nest, based on the global configuration of the NEMO-LIM2 ocean-sea ice model ORCA25 in the North Atlantic and implemented by two-way nesting (Behrens [2013];Böning et al. [2016]). The average flow field, being one of the integral quantities of the boundary current at 53°N including the bottom flow-intensification, is reproduced by VIKING20 (figure 1).

Figure1: Mean velocity field computed from LADCP and mooring data from 53°N (left) (Fischer et al. [2010]) and the mean velocity field of the full resolution Model section at 53°N for the period from 1958 till 2009 (right).

Although circulation and recirculation is stronger and more barotropic in the model than in the observations the overall transport at 53°N including both circulation and recirculation coincides with the observed transport of NADW of ~30 Sv (Zantopp et al. [2017]). Is the model, apart from its challenges in hydrography and hence different baroclinicity, still reproducing variability imprinting processes on Labrador Sea Water (LSW) and the lower North Atlantic Deep Water (LNADW)?

Figure 2: Transport time-series of observations at 53°N, already published in Zantopp et al. [2017] with overlaid low pass filtered model transports of LSW (top) and LNADW (bottom).

In both model and observations the low pass filtered time series are less correlated than the high frequency containing raw transport signal. This could be interpreted as reproduction of low frequency variability imprinting processes that are reproduced by the model. 

But pursuing a PhD in Physical Oceanography does not only include programming and working on data in an office, it is also hands on ship work. Hence I was also able to gain some subpolar and Labrador Sea experience during the cruise MSM54 from St. Johns to Reykjavik from mid May to June 2016. On this cruise I could see and experience the Labrador Sea. We exchanged the mooring array at 53°N and did a high resolution hydrographic survey to maintain the high quality and dense coverage of data in the Labrador Sea. Furthermore moorings in the central Labrador Sea, Irminger Sea and near the west Greenland shelf break where renewed. Knowing what the problems and powers of observational oceanography in this region are is helping me a lot in understanding challenges in my model – observation comparison process.

My current work focuses on the low frequency variability in the model and the observations. Some of the exciting findings will be published soon.

The processes causing this variability are still subject to ongoing research.

Bibliography

Behrens, E. (2013), The oceanic response to Greenland melting: the effect of increasing model resolution, Kiel, Christian-Albrechts-Universität, Diss., 2013.

Böning, C. W., E. Behrens, A. Biastoch, K. Getzlaff, and J. L. Bamber (2016), Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean, Nature Geoscience.

Fischer, J., M. Visbeck, R. Zantopp, and N. Nunes (2010), Interannual to decadal variability of outflow from the Labrador Sea, Geophysical Research Letters, 37(24).

Zantopp, R., J. Fischer, M. Visbeck, and J. Karstensen (2017), From interannual to decadal—17 years of boundary current transports at the exit of the Labrador Sea, Journal of Geophysical Research: Oceans.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.